structuresandconventionalseismicprospectingtechniqueshavebeenusedtoidentifypotentialgashydrateaccumulations,withsomedegreeofcertainty.Theintegrationofloggingandseismicdata,however,providesamorerobustinterpretationofgashydratepresenceanddistribution.Thelinkbetweenloggingdataandseismicdataisrockphysicsmodeling,whichwillbedevelopedinthefollowingsectionsofthereport.
3.3.1.IdentifyingsandsandclaysfromLWDlogs
Oneofthemainexplorationtasksinagashydratereservoircharacterizationstudyistodiscriminatesandsfromclaysand,moreimportantly,toseparatehighlyconcentratedhydrate-bearingsandsfromwater-bearingsandsandfree-gas-bearingsands.ClaysinterbeddedwithdiscretesandscomprisemostofthesedimentsinthedeepwaterGulfofMexico.Figures3e5illustratetypicalwell-logdatafortheGC955area.Ingeneral,eachoftheGC955wellsischaracterizebyarelativelythickstratigraphicsectionextendingfromthesea?oortoadepthbelow300mbsfthatischaracterizedbyrelativelyhighgammaraylogvaluesof70APIandhigher,whichsuggestsclay-dominatedsediments.Withinthemoredeeplyburiedlog-inferredgammaraysand-richsections,thegammaraylogdropstoabout25API.
Rockphysicsdepthtrendscanbecomplicatedbyvaryinglithology,mineralogy,?uidproperties,andporepressurecondi-tions(Avsethetal.,2005).Ingeneral,acousticimpedanceofshallowsedimentsincreaseswithdepthduetocompaction.Closetothesea?oor,sandshavehigherimpedancethanclaysbecauseclaystendtohavehigherwatercontentthansands.However,theporosityofclaysdecreasesfasterwithdepththanthatofsandsintheveryshallowsectionbecauseclaystendtocompactmoreeasilyduringearlyburial(Velde,1996).Theimpedanceofclaystendstoincreasemorequicklythanthatofsands.Thus,animpedancecrossoverofsandsandclaysmayoccurintheshallowsection.Belowthecrossover,clayshavehigherimpedance.NeidellandBerry(1989)observethattheimpedanceofshallowunconsoli-datedPleistocenesandsislowerthanthatofassociatedclays.Hilterman(2001)illustratesthattheimpedanceofsandsislessthanclaysfromveryshallowsectionto4000mbsfinGulfof
00
00
100
200Depth(mbsf)
300
4005006000
50100150
1
GammaRay(API)
2.2515002000250030001.51.75210
3
Resistivity(m)Vp(m/s)Density(g/cm)
Figure3.Gammaray,resistivity,compressional-wave(Vp)acoustic,anddensitylogsfromwellGC955-I,showingathicksandzone.Thelowdensityvaluesinthenon-hydrate-bearingportionofsand-richsectionareprobablyproducedbyboreholewashout(Guerinetal.,2009).
124Z.Zhangetal./MarineandPetroleumGeology34(2012)119e133
a
GC955-H
100200
Depth(mbsf)
300400
500600
501105010015015002000250030001.51.752
3
Resistivity(m)GammaRay(API)Vp(m/s)Density(g/cm)
b
GC955-Q
100100100100
Depth(mbsf)
200200200200
300300300300
400
450
50100150GammaRay(API)
400450
400400
450450
1500200025003000
1.51.752.02.25
3
Resistivity(m)Vp(m/s)Density(g/cm)
Figure4.Gammaray,resistivity,compressional-wave(Vp)acoustic,anddensitylogsfromwells(a):GC955-Hand(b)GC955-Q,showinghighlyconcentratedgashydratewithin
sand-richsections.Notethatthedensitylogsareofgoodqualityinthehydrate-bearingportionofsand-richsection.Thelowdensityvaluesinthenon-hydrate-bearingportionofsand-richsectionareprobablyproducedbyboreholewashout(Guerinetal.,2009).
Mexico.Figure5showsthenormalcompactiontrendfortheGC955area.Itisspeculatedthatthesedimentinducedimpedancecross-overoccursatashallowdepthintheGC955studyarea.Withinthegashydrate-bearingsedimentarysectionofourinterestinthisstudy,from350to700mbsf,theacousticimpedanceofsandsislessthanthatofclays.
Figure6showsthatclays,water-bearingsands,andhydrate-bearingsandsarewellseparatedinthecrossplotofcompressional-wavevelocityversusgammarayvalueintheGC955-Hwell.Water-bearingsandshaverelativelylowcompressional-wavevelocities,whereashydrate-bearingsandsarecharacterizedbyhighvelocities.3.3.2.Rockphysics-basedgashydratemodel
Impedancetrendsinhydrate-bearingsandscanbedescribedbyarockphysics-basedgashydratemodelthatderivesaphysics-basedrelationshipbetweenhydratesaturationandelasticpropertiesofsediments(Vp,Vsanddensity).Effectivemedia,contactmodels,and?uidsubstitutiontheoriesareallusedtocreatetherockphysicsmodelinthisreport.ThefundamentalprinciplesandequationsarepresentedbyMavkoetal.(2009)andhavealsobeenusedbyLeeetal.(2009)toconductsimilarinversionsofgashydrateaccumulationsinnorthernAlaska.Inthisstudythesedimentarysectionisassumedtobeanisotropiccompositemediaofporousrockwith
Z.Zhangetal./MarineandPetroleumGeology34(2012)119e133125
Vp(m/s)
Neutronporosity(%)
Figure5.Compressional-wavevelocityversusneutronporosityfromwellsGC955-H,GC955-I,andGC955-Q,showingnormalcompactiontrend(Hamilton,1971)andhighvelocitygas-hydrate-bearingsands.
isotropicmineraland?uidcomponents,andgashydrate.Themineralcomponentsincludemostlyclaysandsilica-richsands;the?uidcomponentsarewaterandgasinmostcases.Weassumethatgashydrateandfreegasgeneratedintheporespaceofsandsreducethewater-?lledporositybutthatthetotalporespacewouldnotchange(LeeandCollett,2001).Thehydratethat?llstheporespacepartiallyactsasacomponentof?uidandpartiallyactsasacomponentofthemineralframe.Thisbehaviorhasbeenobservedinlaboratorystudies(BuffettandZatespina,2000;Yunetal.,2005;Wintersetal.,2004;Priestetal.,2009).
TheHashin-Shtrikmanlowerboundwasusedtosimulateelasticmoduliofhydrate-bearingsediments(Mavkoetal.,2009).Thelowerlimitoftheboundforeffectiveelasticmoduliiswatersaturatedsedimentwithoutanyhydrate.ThehigherlimitoftheboundistheReussaverageofhydrateandmineralcomponents
(Helgerudetal.,1999;HanandBatzle,2004).Itissuggestedthatatlowgashydratesaturations,hydrate?oatsintheporespaceandisconsideredtobeinsuspension.Whenhydratesaturationincreases,thehydratebecomesgrainsupported.Gashydratehasbothpore?llingandgraincontactedbehaviorsatrelativelyhighgashydratesaturation.Weusetheparameter(ε)providedbyLeeandWaite(2008)todescribebothpore?llingandgraincontactedbehavior.
Weusedthe“Waltonsmoothmodel”topredicttheelasticmoduliofthe“dryrock”matrixandGassmann’sequationtopredicttheelasticmodulioffullywatersaturatedsediment(Mavkoetal.,2009).Table2includestheelasticconstantsusedforthecalculation.Ifgashydrateispresentintheporespace,theHashin-Shtrikmanlowerboundisusedtocomputetheelasticmoduliofthehydrated-bearingsands;iffreegasispresent,Gassmann’sequationisusedtocalculateelasticmoduliofthefree-gas-bearingsands.Uniformgasdistribu-tionisassumedandthe?uidbulkmodulusiscomputedfromtheReussaverageofwaterandgasbulkmoduli(Helgerudetal.,1999).Finally,thecompressional-andshear-wavevelocitiesarecomputedfromthewell-log-derivedmodulianddensities.
TheestimatesofhydratesaturationderivedfromtheJIPLegIIresistivitylogdataintheGC955wellsbyGuerinetal.(2009)wereusedtocalibratethemodel(Fig.7).Compressional-wavevelocityisoneofmainfactorstodetermineseismicacousticamplitudes.Figure7showsthatpredictedvelocitiesincreaseveryslightlyatlowgashydratesaturationslessthan0.12becausehydrateinthislow-saturationcase,hasastrongeffecton?uidsandaweakeffectonthematrix.Suchslightchangewouldnotcausetheamplitudeofhydrate-bearingsedimentstostandoutfromthebackgroundamplitudeofwatersaturatedsedimentsethusmakingthemdif?culttodistinguish.
Vp(m/s)
Table2
Elasticconstantsforcomponentsofsediments.ComponentSandClayHydrateWater
Gammaray(API)
Figure6.Compressional-wavevelocityversusgammarayfromwellGC955-H,showingclay-richsections,water-bearingsandsandgas-hydrate-bearingsands.A1-m-thickinterpolating?lterwasappliedtotherawvelocityandgammaraydatabetween350and437mbsf.
r,g/cm3
2.652.580.911.02
K,GPa3620.97.72.29
G,GPa456.853.20
126
Z.Zhangetal./MarineandPetroleumGeology34(2012)119e133
340032003000
)
s/2800m(p2600V2400220020001800
Gashydratesaturation(fraction)
Figure7.Compressional-wavevelocitiesversusmodel-derivedgashydratesatura-tions.Theredboxescorrespondtomeasuredpointsfromdepthinterval410e450mbsfinGC955-H.Thegreenlinecorrespondstopredictedcompressional-wavevelocitiesestimatedfromourrockphysicsmodelusingε?0.12whichsuggestedbyLeeandWaite(2008),andcoordinatenumber?3.5whichwasusedtopredictvelocitiesofshallowsedimentsinGulfofMexicobyDutta(2009).Aporosityof0.46wasusedinthepredictionofcompressional-wavevelocitiesbasedonloganalysisatthesection.(Forinterpretationofthereferencestocolourinthis?gurelegend,thereaderisreferredtothewebversionofthisarticle.)