128Z.Zhangetal./MarineandPetroleumGeology34(2012)119e133
a
b
c
Figure9.SyntheticseismicdiagramsfromthewedgemodelsinFigure8forhydrate-andgas-bearingsedimentsandhydrate-over-gasbearingsediments.ARickerwaveletof50Hzdominantfrequencywaschosentogeneratezero-offsetsyntheticseismicdata.TheP-wavevelocityoftheclayis1810m/sandthedensityis2.06g/cc.Theelasticpropertiesofwater-bearingsand,hydrate-bearingsandandfree-gas-bearingsandwerederivedfromthewell-logdataandtherockphysicsmodel.(a)alsoincludesplotsofamplitudeverses
thickness.
hydratelayer.Forexample,ifhydratesaturationis75%,thethick-nessofahydratelayerat12Hzis19m(14msTWT).
Figure11bshowsthenormalizedamplitudewithrespectto12Hzfrequencywith30%freegassaturationbelowagashydrate-bearing
x10
-3
layerwithvariablehydratesaturations(model“c”inFigure8c).AstraightlinehasaFourieramplitudeof900(Fig.11b).Abovethestraightline,theamplitudesstarttoincreasewithincreasingthicknesses.Thus,weusedthevalueof900asthe
reference
x10
-3
a
10
4
b
10
9
12Hz
Relativeenergystrength
3.532.521.510.5
12Hz
Relativeenergystrength
10
20
30
Thickness(ms)
40
50
87654321
Frequency(Hz)
30
Frequency(Hz)
2020
30
4040
50
10
2030Thickness(ms)
4050
050
Figure10.(a).TheFourierspectraofthemodel“a”with75%hydratesaturationinFigure8,(b)theFourierspectraofmodel“c”with75%hydratesaturatedsandovera30%gassaturatedsandinFigure8.Thecolorbarshowsdifferentenergylevelin(a)and(b).(Forinterpretationofthereferencestocolourinthis?gurelegend,thereaderisreferredtothewebversionofthisarticle.)
Z.Zhangetal./MarineandPetroleumGeology34(2012)119e133129
a
1900180017001600150014001300
b
Fourieramplitude
Fourieramplitude
1200110010009008007006005004003002001000
1
3
5
7
9
111315171921232527293133353739414345
11001
3
5
7
9
111315171921232527293133353739414345
Thickness(ms)Thickness(ms)
Figure11.(a)The12HzFourieramplitudeversusthicknessplotsfromthemodel“a”and(b)model“c”inFigure8.TheamplitudesarenormalizedwithacalibrationpointderivedfromtheLWDdataintheGC955-Hwell(shownasastarinFigure11a).
amplitudeforthecaseofhydrateoverfreegas,whichisahydratelayer19mthick(16.2msTWT)ifhydratesaturationis50%.
Figure12containsaseriesofcrosssectionsforthesixzonesofinterestasdelineatedinFigure2withthenormalizedamplitudesofthewaveformpeakre?ectorfortheinterpretedtopofthegashydrate-bearinglayerplottedacrossthe6zones.Themaximumpeakamplitudeswerepickedalongthesixzonesonthetracesofa12Hzdominantfrequencysub-band,whichwerederivedfromRockSolidAttributesintheKINGDOMsoftwaresuite(Stanley,2008).ThepeakamplitudeswereproportionaltothenormalizedamplitudebycalibratingwiththeLWDderivedgashydratesatu-rationsintheGC955-H(Fig.11a).
Figure12alsodepictstheseismicinferredoccurrenceofgashydrateandfreegasasmodeledinthisstudy.Amplitudeandwaveformanalysesdescribedinabovesectionswereusedinourinterpretationfortheoccurrenceofgashydrateandfreegas.Normalizedamplitudeslowerthanthereferenceamplitudeof900formodel“c”hydrate-bearingsedimentsareinterpretedtobegas-bearingzoneswith/withoutthinhydrate-bearinglayerabove.Normalizedamplitudesgreaterthanthereferenceamplitudeof
Zone1WellGC955Q
Amplitude
Amplitude
Zone2
200
WellGC955H
200
400Distance(m)Zone3
600
800
400
Distance(m)Zone4
600800
Amplitude
Amplitude
Distance(m)Zone5
Distance(m)Zone6
Distance(m)
Amplitude
Distance(m)
Gassandswith/withoutthinhighconcentrationhydrateorthick
lowconcentrationhydrateaboveit
Gassandswiththickhighlyconcentratedhydrateaboveit
Amplitude
Thickhighlyconcentratedhydrate-bearingsands
Figure12.Theseismicinterpretedhydratelayerandhydratewith/withoutfreegasbeneathitinthesixidenti?edzonesinFigure2inferredfromthe12Hzdominatedfrequencysub-band(Fig.11).
130Z.Zhangetal./MarineandPetroleumGeology34(2012)119e133
300formodel“a”hydrate-bearingsedimentsareinterpretedtobe
thickhydrate-bearinglayerswithoutfreegasbelow.Someofthe
highamplitudere?ectorsinFigure2donotnecessarilycorrespond
tothethick,highsaturatedgashydratelayers.Forexample,there
arehighamplitudesinzone6,butthehydratethicknessinthezone
isrelativelythinasshowninFigure12.3.5.2DmodelingForward2Dmodelingwasusedtostudytheseismicresponsesinasequenceofthinandthicksandbedscontainingeithergashydrateat50or70%saturation,orfreegasat30%saturation.Thegeologicmodelwasgeneratedbasedontheinterpretation
fromFigure13.Comparisonbetween(a)?eldstackedseismicsectionand(b)compressional-wavevelocitymodelusedtogeneratethesyntheticstack,and(c)syntheticstackedseismicsection.
Z.Zhangetal./MarineandPetroleumGeology34(2012)119e133131
seismicandloggingdatafromGC955.A35HzRickerwaveletwasusedinthisgeologicmodel.Compressional-wavevelocitiesofclay-richsectionswerederivedfromJIPLegIIloggingdataasshowninFigure13b.Densitiesoftheclay-richsectionswerecalculatedfromamodi?edGardner’sequationbycalibratingwithLWDdata.Withinthesand-richzones,theelasticparametersforvariablegashydrateandfree-gassaturationswerecomputedfromtherockphysicsmodelpreviouslydiscussedinthisreport.
Theestimatedwell-log-andmodel-derivedvelocityanddensitydistributionswereinputintoHampson-Russell’sAVOmodelingpackage(Russelletal.,2001).ThesyntheticamplitudeswerecomputedfromtheZoeppritzequationsintheray-tracingmodelingalgorithm.NMOcorrectionwasappliedinthe?nalmodel.Theeffectsofconvertedwaves,inelasticity,andanisotropywerenotconsideredinthemodel.Overall,thereisagoodagreementforamplitudeandwaveformatthetopofseismicinferredsandlayersbetweensyntheticdatageneratedfrommodeldataand?eldseismicdata(Fig.13aandc).ThebaseofthesandlayerswerenotrecoveredinsyntheticdatabecausenotallsandlayerswerepenetratedatGC955wells.Forexample,onlythehydratesaturationsectionatthetopofthesandlayerwasloggedatGC955-Q.Wesuspectthatamorecomplex2-Dmodelcouldproducethecomplexamplitudepaintingsatthebaseofthesand,iftherewerelogcontrols.
Theamplitudefeaturesseeninthe?elddata(Figs.2and13a)havegashydratesaturationandthicknesscontributions,whicharesimulatedbythe2Dmodeling(Fig.13bec).Theamplitudeanom-alieshavepatternsconsistingofhighwaveformpeakoverhighwaveformtrough(probablyrelativelythickbedofgashydrate)andlowpeakwaveformoverhighwaveformtrough(probablyrela-tivelythinbedofgashydrate),asanticipatedfromtheanalysispresentedearlierinthisreport.VelocitymodelingdataforZones1,2,and3(Fig.2)arealsopresentedinFigure13b.HighpeakamplitudeanomaliesinZone1showhighgashydratesaturationof50%underlainbyfreegasbetweensp30andsp40.WithinZone2,however,theamplitudeanalysisrevealsan18mthickgashydratelayerwithoutfreegasbelowassociatedwithdominanthighpeakamplitudesbetweensp65andsp80.Zone3showpeakanomalies(aquatoblueinFigure13c)changingwithlayerthicknessvariation(from2mto19m)with50%gashydratesaturation.4.Discussion
4.1.Thedistributionofgashydrateandfreegas
Althoughseismicsignaturesofgashydratevarysigni?cantlyacrossGC955,themostprominentseismiccharacteristicinthestudyareaareacousticbrightspots,whicharehighamplitudeanomaliesinthestackedseismicsection.Theamplitudeanomaliesaredistributedinarangefrom3.15sto3.4sTWTthatareequiv-alenttoameasureddepthofapproximately400mbsfto680mbsf(Fig.2).Speci?cdepthsofsomeoftheanomaliesarepresentedinTable1.
Sixzones(Zone1toZone6inFigure2andTable1)havebeenanalyzedinthisstudyfortheoccurrenceofgashydrateandfreegasbasedonamplitudestrengthandpatternsinfullbandand12Hzsub-bandseismicdatafromGC955.Zone1ischaracterizedbychaotichighamplitudere?ectorswithhighpeakamplitudeevents(aquainFigure2andTable1)overhightroughamplitudeanom-alies(yellowinFigure2andTable1)atthecrestofastructuralhigh.Theseamplitudesareinterpretedtobefreegasoverlainbythickhighlyconcentratedhydrate-bearingsandlayers(yellowinZone1inFigure12).Logdatashowanincreaseinvelocityandresistivityintheseismic-inferredgashydrateoccurrencesinZone1.Gashydratesaturationsestimatedfromtheresistivitylogsareapproximatelybetween40%and75%(Guerinetal.,2009).Ablankedzoneabove