久久建筑網(wǎng)(i5h4u.cn)致力打造一個專業(yè)的建筑學(xué)習(xí)分享平臺! 用戶登陸 免費注冊 | 每日簽到 | 金幣充值| 會員中心 | 上傳資料
  位置提示: 主頁 > 隱藏域 > 資料庫 > 正文

Edge Agreement of Multi-agent System with Quantized Measurements via Directed Ed

http://i5h4u.cn 15-09-30 點 擊: 字體: 【

Edge Agreement of Multi-agent System with Quantized Measurements via Directed Edge Laplacian

EdgeAgreementofMulti-agentSystemwithQuantizedMeasurementsviaDirectedEdge

Laplacian

arXiv:1501.06678v1 [cs.SY] 27 Jan 2015ZhiwenZenga,XiangkeWanga,ZhiqiangZhenga,aCollegeofMechatronicsandAutomation,NationalUniversityofDefenseTechnology,410073,China


1Introduction

Thegraphtheorycontributessigni?cantlyintheanalysisandsynthesisofmulti-agentsystems,sinceitprovidesnaturalabstractionsforhowinforma-tionissharedbetweenagentsinanetwork.Specially,thespectralpropertiesofthegraphLaplacianareextensivelyexploredrecentlytoprovideconvergenceanalysisinthecontextofmulti-agentcoordinationbehaviour[1][2].Despitetheunquestionableinterestoftheresultsconcerningtheconvergenceproper-tiesintheseliteratures,wealsonotethat,anotherinterestingtopicwithre-gardtohowcertainsubgraphs,suchasspanningtreesandcycles,contributetotheanalysisofmulti-agentsystems,hasariseninmorerecently.Anim-portantthemeinthisdirectionistoobtaintheexplicitconnectionsbetweenthetopologystructureandthecontrolsystem.Consideringthis,anattractivenotionabouttheedgeagreementdeservespecialattention,inwhichtheedgeLaplacianplaysanimportantrole.Pioneeringresearchesonedgeagreementunderundirectedgraphnotonlyprovidetotallynewinsightsthathowthespanningtreesandcyclese?ecttheperformanceoftheagreementprotocol,butalsosetupanovelsystematicframeworkforanalysingmulti-agentsys-temsfromtheedgeperspective[3][4][5].Theedgeagreementin[3]providesatheoreticanalysisofthesystem’sperformanceusingbothH2andH∞norms,andtheseresultshavebeenappliedinrelativesensingnetworksreferringto

[4].Moreover,basedonthealgebraicpropertiesoftheedgeLaplacian,[5]examineshowcyclesimpacttheH2performanceandproposedanoptimalstrategyforthedesignofconsensusnetworks.AlthoughtheedgeLaplaciano?ersmoretransparentunderstandingofthegraphstructure,itstillremainsanundirectednotioninaforementionedliteratures.Morerecently,theedgeLaplacianisusedtoexaminethemodelreductionofnetworkedsystemas-sociatedwithdirectedtreesthroughclusteringin[6];howeveritcannotbedirectlyextendedtomoregeneraldirectedgraphsyet.

Constraintsoncommunicationhaveaconsiderableimpactontheperformanceofmulti-agentsystem.Tocopewiththelimitationsofthe?nitebandwidthchannels,measurementsarealwaysprocessedbyquantizers.Duetothefactthatquantizationintroducesstrongnonlinearcharacteristicssuchasdiscon-tinuityandsaturationtothesystem,theresearchofthecoordinationbe-haviourofmulti-agentsysteminthepresenceofquantizedmeasurementsisstillquitechallenging.Recently,thegossipingalgorithms[7][8]aswellasthecoding/decodingschemes[9][10][11]havebeenproposedtosolvethequan-tizedconsensusproblem,wheretheconvergencetimeisthemainresearchfocus.Whilethesemethodsaremainlydevisedfordiscrete-timesystems,thecontinuous-timesystemshasalsoattractedmuchattention.Thespectralprop-ertiesoftheincidencematrixisusedtoanalyzetheconvergencepropertiesofmulti-agentsystemunderquantizedcommunicationin[12].Besides,thesample-databasedcontrol[13]andnonsmoothanalysis[14]arealsoemployed

2


totacklethequantizedmeasurements.However,onlythe?rstorderdynamicshasbeenconsideredintheaboveapproaches.Asknownthat,multi-agentsys-temwithsecond-orderdynamicscanhavesigni?cantlydi?erentcoordinationbehaviourevenwhenagentsarecoupledthroughsimilartopologycondition[15].Uptodate,tothebestofauthors’knowledge,therearestilllittleworksexplorethequantizatione?ectsonsecond-orderdynamics.[15]studiestheef-fectsofdi?erentquantizersonthesynchronizationbehaviourofmobileagentswithsecond-orderdynamics.In[16],thecollectivecoordinationofsecond-orderpassivenonlinearsystemsunderquantizedmeasurementsareconsidered.Byusingnonsmoothanalysis,someconvergenceresultsunderquantizationconstraintsarederivedforsecond-orderdynamicssystemin[17].However,theseworksrequirethatthenetworktopologiesareundirected.Tomorere-centliterature[18],theauthorsaddressthequantizedconsensusproblemofsecond-ordermulti-agentsystemsviasampleddataunderdirectedtopology.Consideringthedrawbacksofthesampleddataapproachmentionedin[16],theresearchonthequantizatione?ectsonsecond-ordermulti-agentunderdirectedtopologyisstillverychallenging.

Whiletheanalysisofthenodeagreement(consensusproblem)hasmatured,workrelatedtotheedgeagreementhasnotbeendeeplystudied.Notethatthequantizedmeasurementsbringenormouschallengestotheanalysisofthesynchronizationbehaviourofthesecond-ordermulti-agentsystem,sointhispaper,wearegoingtoexploremoredetailsaboutthistermcombiningtheedgeagreement.Themaincontributionscontainthreefolders.First,weextendourpreliminarywork[19]totheweighteddirectededgeLaplacianandfurtherex-plorethealgebraicpropertiesforanalysingtheinteractingmulti-agentsystem.Sinceitsundirectedcounterparthasshowngreatpotentialforexploringthesystemperformancein[3][20],webelievethatthenovelgraph-theoretictooldeservesmoreattention.Second,undertheedgeagreementframework,theclosed-loopmulti-agentsystemcanbetransformedintoanoutputfeedbackinterconnectionstructure.Correspondingly,basedontheobservationthattheco-spanningtreesubsystemcanbeservedasaninternalfeedback,amodelreductionrepresentationcanbederived,whichallowsaconvenientanalysis.Third,basedonthereducededgeagreementmodel,weproposeageneralanal-ysisoftheconvergencepropertiesforsecond-ordernonlinearmulti-agentsys-temunderquantizedmeasurements.Particularly,fortheuniformquantizers,weprovidetheexplicitupperboundoftheradiusoftheagreementneighbor-hoodandalsoindicatethattheradiusincreaseswiththequantizationinterval.Whileforthelogarithmicquantizers,theagentsconvergeexponentiallytothedesiredagreementequilibrium.Additionally,wealsoprovidetheestimatesoftheconvergencerateaswellasindicatethatthecoarserthequantizeris,theslowertheconvergencespeed.

Therestofthepaperisorganizedasfollows:preliminariesandproblemfor-mulationareproposedinSection2.ThedirectededgeLaplacianwithits

3


algebraicpropertiesareelaboratedinSection3aswellastheedgeagreementmechanism.Thequantizededgeagreementproblemwithsecond-ordernon-lineardynamicsunderdirectedgraphisstudiedinSection4.ThesimulationresultsareprovidedinSection5whilethelastsectiondrawstheconclusions.2BasicNotionsandPreliminaryResults

Inthissection,somebasicnotionsingraphtheoryandpreliminaryresultsaboutthesynchronizationofmulti-agentsystemunderquantizedinformationarebrie?yintroduced.

2.1GraphandMatrix

Inthispaper,weuse|·|and??·??todenotetheEuclideannormand2-normforvectorsandmatricesrespectively.ThenullspaceofmatrixAisdenotedbyN(A).DenotebyIntheidentitymatrixandby0nthezeromatrixinRn×n.Let0bethecolumnvectorwithallzeroentries.LetG=(V,E)beadirectedgraphoforderNspeci?edbyanodesetVandanedgesetE?V×VwithsizeL.Foraspeci?cedgeek=(j,i),letv?(ek)denotesitsinitialnodejandv⊙(ek)theterminalnodei.ThesetofneighboursofnodeiisdenotedbyNi={j:ek=(j,i)∈E}.WeuseA(G)torepresentaweightedadjacencymatrix,wheretheadjacencyelementsassociatedwiththeedgesarepositive,i.e.,ek=(j,i)∈E?aij>0,otherwise,aij=0.DenotebyW(G)theL×Ldiagonalmatrixofwk,fork=1,2···,L,wherewk=aijforek=(j,i)∈E.ThenotationD(G)representsadiagonalmatrixwith?i(G)denotingthein-degreeofnodeionthediagonal.ThecorrespondinggraphLaplacianofGisde?nedasLn(G):=D(G)?A(G),whoseeigenvalueswillbeorderedanddenotedas0=λ1≤λ2≤···≤λN.TheincidencematrixE(G)∈RN×Lforadirectedgraphisa{0,±1}-matrixwithrowsandcolumnsindexedbynodesandedgesofGrespectively,suchthatforedgeek=(j,i)∈E,[E(G)]jk=+1,

[E(G)]ik=?1and[E(G)]lk=0forl=i,j.Thede?nitionimpliesthateachcolumnofEcontainsexactlytwononzeroentriesindicatingtheinitialnodeandtheterminalnoderespectively.WeillustrateFigure1asanexample.AdirectedpathindirectedgraphGisasequenceofdirectededgesandadirectedtreeisadirectedgraphinwhich,fortherootiandanyothernodej,thereisexactlyonedirectedpathfromitoj.AspanningtreeGT=(V,E1)ofadirectedgraphG=(V,E)isadirectedtreeformedbygraphedgesthatconnectallthenodesofthegraph;aco-spanningtreeGC=(V,E?E1)ofGTisthesubgraphofGhavingalltheverticesofGandexactlythoseedgesofGthatarenotinGT.GraphGiscalledstronglyconnectedifandonlyifanytwo

4


?=?

??

Fig.1.Theincidencematrixofasimpledirectedgraph.

distinctnodescanbeconnectedviaadirectedpath;quasi-stronglyconnectedifandonlyifithasadirectedspanningtree[21].Aquasi-stronglyconnecteddirectedgraphGcanberewrittenasaunionform:G=GT∪GC.Inaddition,

Word文件下載:Edge Agreement of Multi-agent System with Quantized Measurements via Directed Ed.doc







  ※相關(guān)鏈接
熱點排行 更多>>
· 免費農(nóng)村房屋設(shè)計圖 附效果圖
· 結(jié)構(gòu)力學(xué)視頻教程[同濟大學(xué)]80集
· 新農(nóng)村住宅設(shè)計圖3套
· 200多個施工工藝動畫打包
· 全套別墅施工圖紙(cad文件)
· 建筑施工手冊第四版高清完整(共267M).rar
· 廣聯(lián)達計價軟件GBQ4.0初級視頻教程
· 一套別墅的施工效果圖 CAD 3D模型
· 02S701 磚砌化糞池圖集免費
· 05J909工程做法圖集
· 12J201平屋面建筑構(gòu)造
· 建筑專業(yè)標準規(guī)范大全
· 12J1工程做法圖集
· 12J003室外工程圖集
· cad字體全集能顯示鋼筋符號
· 11G329-1~3圖集(合訂本)
· 12G901系列圖集(1-3)
· 2010廣東省建筑與裝飾工程綜合定額(PDF版)
· 廣聯(lián)達安裝算量軟件GQI2013視頻教程全集
· 建筑工程資料員一本通
· 12G614-1 砌體填充墻結(jié)構(gòu)構(gòu)造
· 常用建筑工程驗收標準
· 豪華別墅CAD全套+室內(nèi)效果圖
· 三層超豪華別墅建筑和結(jié)構(gòu)CAD圖紙+效果
· 施工組織設(shè)計實例大全
· 2013建設(shè)工程工程量清單計價規(guī)范完整版
· 05s502圖集閥門井
· 12G901-1~3
· 07FJ02-《防空地下室建筑構(gòu)造》圖集(PDF清晰版
· GB50268-2008 《給水排水管道工程施工及驗收規(guī)
· [福建]框架核心筒結(jié)構(gòu)超高層商務(wù)綜合體總承包工程
· 2017年《造價管理》教材電子版
· 給排水規(guī)范大全(2016)
· 3層單家獨院式別墅全套圖紙(值得珍藏)
· 工程監(jiān)理新人崗前培訓(xùn)ppt課件
· 2017年版一建-市政新思維標注考點版
· GB50500-2013全套清單規(guī)范(內(nèi)含所有專業(yè))
· 建筑老司機都懂的施工安全常識
· 12YJ1-6圖集大全
· 2017年造價工程師考試用書
· 一級建造師法規(guī)17教材
· 寧夏標準圖集大全
· 建筑設(shè)計資料集精華本
· 注冊巖土工程師全套規(guī)范
· 公共設(shè)施施工組織設(shè)計大全
· 西南j11合訂本
· 供配電歷年真題
· JGJ39-2016托兒所幼兒園建筑設(shè)計規(guī)范
· 一份完整的工程案例(圖紙、算量稿)
· 浙江省安裝工程預(yù)算定額
· 2016年一級建造師電子版教材
· 中國暴雨統(tǒng)計參數(shù)圖集(2006版)
· 水工設(shè)計手冊第一版(八卷全)
· 西南11J圖集合集
· 2015造價師考試建設(shè)工程技術(shù)與計量安裝教材
· 民用建筑電氣設(shè)計手冊(第二版)
· 給排水實踐教學(xué)及見習(xí)工程師圖冊
· 創(chuàng)意庭院
· 中國十大著名地標建筑
· 05圖集電氣
  • 數(shù)百萬工程資料下載
    久久建筑網(wǎng)提供 圖紙/書籍/方案/圖集

  • 2002版《水利工程施工機械臺時費定額
    2002版《水利工程施工機械臺時費定額2002版《水利工程施工機械臺時費定額2002版《水利工程施工機械

  • 復(fù)式樓裝修方案dwg
    復(fù)式樓裝修方案_dwg

  • DLT 5187.2-2004 火力發(fā)電廠運煤設(shè)計技術(shù)規(guī)程 第2部分
    DLT 5187.2-2004 火力發(fā)電廠運煤設(shè)計技術(shù)規(guī)程 第2部分:煤塵防治.pdf

  • 求最大重復(fù)子串.ppt
    求最大重復(fù)子串.ppt,OI論文 字符串 ACM。

  • 《夢幻西游》案例分析.ppt
    《夢幻西游》案例分析.ppt文獻資料!

  • 衛(wèi)生專業(yè)資格考試神經(jīng)電生理(腦電圖)技術(shù)考試練習(xí)題
    衛(wèi)生專業(yè)資格考試神經(jīng)電生理(腦電圖)技術(shù)考試練習(xí)題,衛(wèi)生專業(yè)資格考試神經(jīng)電生理(腦電圖)技術(shù)考

  • 日本佛教史
    日本佛教史。

  • GBJ13-86 室外給水設(shè)計規(guī)范
    GBJ13-86 室外給水設(shè)計規(guī)范.pdfGBJ13-86 室外給水設(shè)計規(guī)范

  • 百家講壇之道德與法律
    百家講壇之道德與法律.txt,百家講壇。 “硫酸潑熊”引發(fā)的思考袁濟喜 主講人簡介: 袁濟喜中國人民

  • 通達信文件修改對比工具Portable.exe
    通達信文件修改對比工具Portable.exe,所有同類文件同步比較,非常方便的一款對比工具。

  • 2011昌平區(qū)初三一模數(shù)學(xué)試題(含答案)
    2011昌平區(qū)初三一模數(shù)學(xué)試題(含答案),2011中考復(fù)習(xí)資料之真題篇,新年華學(xué)校010-51663232。 金屬

  • 橋涵(上冊)
    橋涵(上冊).pdf

  • 危險化學(xué)品安全管理條例(最新2011)
    危險化學(xué)品安全管理條例(最新2011),2011年3月發(fā)布的《危險化學(xué)品安全管理條例》。。

  • 作業(yè)十一
    作業(yè)十一,11。

  • 公務(wù)員輔導(dǎo)專家鎖定21組經(jīng)典公務(wù)員面試題
    公務(wù)員輔導(dǎo)專家鎖定21組經(jīng)典公務(wù)員面試題,公務(wù)員面試 公務(wù)員輔導(dǎo)專家鎖定組經(jīng)典公務(wù)員面試題表格 公

  • 開童裝注意事項
    開童裝注意事項,s。 如何做好童裝零售微軟中國表格 如何做好童裝零售?如何開好童裝店? 分享到空間分

  • 西方經(jīng)濟學(xué)復(fù)習(xí)要點
    西方經(jīng)濟學(xué)復(fù)習(xí)要點,挺全的,應(yīng)該有用。 《宏微觀經(jīng)濟學(xué)》的期末復(fù)習(xí)大綱年月日朱志芬細明?、、、、

  • 你是學(xué)生??
    最佳答案: http://i5h4u.cn 久久建筑網(wǎng) 是的。。!建筑設(shè)計! http://www.99jianzhu.

  • lecture07-2005
    lecture07-2005,代數(shù)圖論--圖的譜理論--最小割 與最大割 參考資料。

  • 育明教育:北京大學(xué)風景園林考研參考書,北大風景園林
    育明教育:北京大學(xué)風景園林考研參考書,北大風景園林考研復(fù)試線,北大考研專業(yè)課輔導(dǎo) ,育明教育,五

        <center id="c00qw"></center>
          <dd id="c00qw"><nav id="c00qw"></nav></dd>