千萬建筑資料下載 →
第33卷第2期2010年3月
兵器材料科學(xué)與工程
ORDNANCEMATERIALSCIENCEANDENGINEERING
Vol.33No.2
Mar.,2010
求解超高壓筒形容器爆破壓力的神經(jīng)網(wǎng)絡(luò)方法
袁格俠1,2,劉宏昭1,錢學(xué)梅3,范彩霞1,4,錢學(xué)軍5,秦麗柏3
(1.西安理工大學(xué)機(jī)械與精密儀器工程學(xué)院,陜西西安710048;2.寶雞文理學(xué)院機(jī)電研究所,陜西寶雞721007;
3.中國兵器科學(xué)研究院寧波分院,浙江寧波315103;4.焦作大學(xué),河南焦作454150;
5.內(nèi)蒙古第一機(jī)械制造(集團(tuán))有限公司,內(nèi)蒙古包頭0314034)
摘
要將BP和RBF神經(jīng)網(wǎng)絡(luò)的理論和算法應(yīng)用于預(yù)測超高壓容器爆破壓力的研究中。選用MATLAB神經(jīng)網(wǎng)絡(luò)工具箱
建立預(yù)測爆破壓力的神經(jīng)網(wǎng)絡(luò)模型,研究模型中影響爆破壓力的主要參數(shù),內(nèi)外徑比值和材料的強(qiáng)度極限,屈服極限,屈服強(qiáng)度與強(qiáng)度極限的比值;選用Faupel、Crossland和Bones等文獻(xiàn)中的爆破實(shí)驗(yàn)數(shù)據(jù)對神經(jīng)網(wǎng)絡(luò)模型進(jìn)行訓(xùn)練,用訓(xùn)練好的神經(jīng)網(wǎng)絡(luò)模型對爆破壓力進(jìn)行預(yù)測。預(yù)測結(jié)果表明,用BP和RBF神經(jīng)網(wǎng)絡(luò)方法建立的模型能夠?qū)Τ邏和残稳萜鞯谋茐毫M(jìn)行較為準(zhǔn)確的預(yù)測。
關(guān)鍵詞超高壓容器;爆破壓力;BP神經(jīng)網(wǎng)絡(luò);RBF神經(jīng)網(wǎng)絡(luò);預(yù)測中圖分類號TQ051;TP391.75
文獻(xiàn)標(biāo)識碼A
文章編號1004-244X(2010)02-0031-04
ANN-basedpredictionofburstingpressureunderultra-highpressureforcylindricalvessel
YUANGexia1,2,LIUHongzhao1,QIANXuemei3,F(xiàn)ANCaixia1,4,QIANXuejun5,QINLibai3
(1.DepartmentofMechanical&PrecisionInstrumentEngineering,Xi′anUniversityofTechnology,Xi′an710048China;
2.MechanicalandElectricalInstitute,BaojiUniversityofArtsandSciences,Baoji721007,China;3.NingboBranchof
ChinaAcademyofOrdnanceScience,Ningbo315103,China;4.JiaozuoUniversity,Jiaozuo454150,China;
5.InnerMongoliaNo.1Machinery(Group)LimitedCompany,Baotuo014034,China)
AbstractThetheoryandthealgorithmofBPandRBFneuralnetworkareappliedintheresearchforpredictingtheburstingpressureofultra-highpressurevessel.First,theneuralnetworkmodelhasbeenestablishedforpredictingburstingpressurebyusingMATLABNeuralNetworkToolsinconsiderationofthemainfactorsofinfluencingburstingpressure.Thefactorsincludeultimatestrength,yieldstress,ratioofouterradiustoinnerradiusofthepressurevesselcylindersandyieldratio.ThentheestablishedneuralnetworkmodelistrainedbychoosingalargeamountofburstingexperimentaldatafromFaupel,CrosslandandBones,andsomereferences.Finally,thetrainedneuralnetworkmodelisusedtopredicttheburstingpressure.ThepredictionresultsshowthattheburstingpressuremodelusingtheBPandRBFneuralnetworkmethodcanpredictburstingpressureexactly.
Keywordsultra-highpressurevessel;burstingpressure;BPneuralnetwork;RBFneuralnetwork;prediction
隨著超高壓技術(shù)的發(fā)展,超高壓容器在高壓化工、石油化工、人造水晶、合成金剛石、超高壓食品加工等領(lǐng)域
收稿日期:2009-10-30;修回日期:2009-11-26基金項(xiàng)目:寶雞文理學(xué)院重點(diǎn)科研項(xiàng)目(ZK0727)資助
已得到廣泛應(yīng)用。其要求能耐數(shù)千甚至數(shù)萬大氣壓,在如此高的壓力下工作,其選材、設(shè)計(jì)和制造等問題受到人們
作者簡介:袁格俠,女,博士研究生,副教授;主要從事高壓容器強(qiáng)度與失效分析研究。E-mail:yuangexia2006@126.com。
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!![5]董瀚,李桂芬,陳南平.高強(qiáng)度裝甲鋼的抗彈性能研究[J].鋼[11]蔣志剛,曾首義,周建平.分析金屬裝甲彈道極限的兩階段模
鐵,1996,31(增刊):67-71.
[6]ManganelloSJ,AbbottKH.Metallurgicalfactorsaffectingthe
型[J].工程力學(xué),2005,22(4):229-234.
[12]TaylorGI.Theformationandenlargementofacircularholein
ballisticbehaviorofsteeltargets[J].JournalofMaterials,JMLSA,1972,7(2):231-239.
[7]DikshitSN,KutumbaraoVV,SundararajanG.Theinfluenceof
athinplasticsheet[J].TheQuarterlyJournalofMechanicsandAppliedMathematics,1948,1(1):103-124.
[13]KurtaranH,BuyukM,EskandarianA.Ballisticimpactsimula-
platehardnessontheballisticpenetrationofthicksteelplates
[J].InternationalJournalofImpactEngineering,1995,16(2):
tionofGTmodelvehicledoorusingfiniteelementmethod[J].TheoreticalandAppliedFractureMechanics,2003,40:113-121.
[14]BiswajitBanerjee.Themechanicalthresholdstressmodelfor
293-320.
[8]蔣志剛,曾首義,周建平.分析金屬靶板彈道極限的延性擴(kuò)孔模
型[J].彈道學(xué)報(bào),2004,16(1):54-59.
[9]蔣志剛,曾首義,周建平.尖頭彈丸撞擊下金屬靶板彈道極限的
兩種工程模型[J].應(yīng)用力學(xué)學(xué)報(bào),2005,22(1):21-26.[10]蔣志剛,曾首義,周建平.剛性尖頭彈垂直撞擊金屬厚靶板極
限速度分析[J].固體力學(xué)學(xué)報(bào),2004,25(3):360-364.
varioustempersofAISI4340steel[J].InternationalJournalofSolidsandStructures,2007,44:834-859.
[15]StakerMR.TheRelationbetweenadiabaticshearinstability
strainandmaterialproperties[J].ActaMetallurgica,1981,29
(4):683-689.
求解超高壓筒形容器爆破壓力的神經(jīng)網(wǎng)絡(luò)方法.doc下載久久建筑網(wǎng)i5h4u.cn提供大量:建筑圖紙、施工方案、工程書籍、建筑論文、合同表格、標(biāo)準(zhǔn)規(guī)范、CAD圖紙等內(nèi)容。