on cell level
Fig.5 The distribution map of coef? cient estimates
on greening rate
km
km
注:圖中星號*分別表示4個中心位置;圓型符號表示樓棟總層數(shù)的系數(shù)估計值。注:圖中星號*分別表示4個中心位置;圓型符號表示小區(qū)容積率的系數(shù)估計值。
圖6 樓棟總層數(shù)系數(shù)估計值的分布圖圖7 小區(qū)容積率系數(shù)估計值的分布圖
Fig.6 The distribution map of coef? cient estimates
on ? oors
Fig.7 The distribution map of coef? cient estimates
on cell plot ratio
王新剛等:城市住房價格局部線性地理加權(quán)回歸分析——以湖北省黃石市為例896 結(jié)論
本文以典型的土地稀缺、資源組團型城市——湖北省黃石市為例,結(jié)合其多個片區(qū)中心、地形復(fù)雜的特
(LLGWR)點,構(gòu)建城市住房價格的局部線性地理加權(quán)回歸模型,探索了住房價格及影響因子的空間變化規(guī)律。
(1)(OLS)案例分析發(fā)現(xiàn):與常規(guī)線性回歸相比,GWR和LLGWR模型采用局部光滑擬合方法,考慮了住房價格
(2)的空間異質(zhì)性,能更為準(zhǔn)確地解釋住房價格,且LLGWR優(yōu)于GWR;宏觀市場趨勢是影響住房價格的關(guān)鍵因
(3)素,但在不同的地理區(qū)位,住房價格增長趨勢有明顯的差異;反映土地緊缺的容積率與住房價格具有顯著的
(4)正相關(guān)性,但在不同的功能片區(qū),其影響力具有差異;研究區(qū)土地規(guī)劃具有多中心的空間結(jié)構(gòu)特征,城市區(qū)
位是影響住房價格的重要因素,兩者具有較顯著的相關(guān)性,在商業(yè)中心區(qū)和行政中心區(qū),價格受區(qū)位影響最為
(5)突出;研究區(qū)土地供應(yīng)等政策變化影響房地產(chǎn)空間分布,但土地價格與住房價格之間并無明顯的相關(guān)關(guān)系。參考文獻(References):
[1] A dair A.S., Berry J.N., McGreal W.S. Hedonic modeling,housing submarkets and residential valuation[J] . Journal of Property
(1)Research, 1996, 13: 67 - 83.
(12)[2] 阮連法,包洪潔,溫海珍.重大事件對城市住宅價格的影響來自杭州市的證據(jù)[J] . 中國土地科學(xué),2012,26:41 - 47.
(10)[3] 王 松濤,劉洪玉.土地供應(yīng)政策對住房供給與住房價格的影響研究[J] . 土木工程學(xué)報,2009,42:116 - 121.
(3)[4] Pollakowski H.O.,Wachter S.M. The effects of land-use constraints on housing prices [J] . Land Eco-nomics, 1990, 66: 315 - 324.
(4)[5] 黃忠華,虞曉芬,杜雪君.土地供應(yīng)對住房價格影響的實證研究——以上海市為例[J] . 經(jīng)濟地理,2009,29:624 - 627.
[6] 張娟峰.住宅價格與土地價格的城市間差異及其決定因素研究[D] . 杭州:浙江大學(xué),2008.
(2)[7] 廖邦固,徐建剛,宣國富,等.1947—2000年上海中心城區(qū)居住空間結(jié)構(gòu)演變[J] . 地理學(xué)報,2008,63:195 - 206.
(4)[8] ?◎撸瑓螆@,劉科偉.城市規(guī)劃視角下西安市主城區(qū)住宅空間結(jié)構(gòu)演變研究[J] . 人文地理,2011,26:48 - 53.
[9] Fotheringham A.S., Brunsdon C, Charlton M. Geographically Weighted Regression[M] . Chichester, UK: John Wiley and Sons, 2002. [10] Y u D. Spatially Varying Development Mechanisms in the Greater Beijing Area: A Geographically Weighted Regression Investigation[J] .
(1)Annals of Regional Science, 2006, 40: 173 - 190.
(2)[11] 覃文忠,王建梅,劉妙龍.混合地理加權(quán)回歸模型算法研究[J] . 武漢大學(xué)學(xué)報:信息科學(xué)版,2007,32:115 - 119.
[12] M cCord M, Davis P.T., Haran M, et al. Spatial variation as a determinant of house price:Incorporating a geographically weighted regression
(1)approach within the Belfast housing market[J] . Joural of Financial Management of Property and Construction, 2012, 17: 49 - 72.
[13] F arber S, Páez A. A systematic investigation of cross-validation in GWR model estimation: empirical analysis and Monte Carlo
(4)simulations[J] . Journal of Geographical System, 2007, 9: 371 - 396.
[14] W ang N, Mei C.L., Yan X.D. Local linear estimation of spatially varying coefficient models:an improvement on the geographically
(4)weighted regression technique[J] . Environment and Planning A, 2008, 40: 986 - 1005.
[15] H urvich C.M., Simonoff J.S., Tsai C.L. Smoothing parameter selection in nonparametric regressi On using an improved Akaike
(2)information criterion[J] . Journal of the Royal Statistical Society B, 1998, 60: 271 - 293.
[16] 梅長林,王寧.近代回歸分析方法[M] . 北京:科學(xué)技術(shù)出版社,2012.
[17] R obinson C, Schumacker R.E. Interaction effects: Centering,variance inflation factor and interpretation issues[J] . Multiple Linear
(1)Regression Viewpoints, 2009, 35: 6 - 11.
(1)[18] M ei C.L., He S.Y., Fang K.T. A note on the mixed geographically weighted regression[J] . Journal of Regional Science, 2004, 44: 143 - 157.
(本文責(zé)編:郎海鷗)